Approximate Bayesian inference in spatial GLMM with skew normal latent variables
نویسندگان
چکیده
Spatial generalized linear mixed models are common in applied statistics. Most users are satisfied using a Gaussian distribution for the spatial latent variables in this model, but it is unclear whether the Gaussian assumption holds. Wrong Gaussian assumptions cause bias in parameter estimates and affect the accuracy of spatial predictions. Thus, there is a need for more flexible priors for the latent variables, and to perform efficient inference and spatial prediction in the resulting models. In this paper we use skew normal distribution for the spatial latent variables. We propose new approximate Bayesian methods for inference and spatial prediction in this model. A key ingredient in our approximations is using the closed skew normal distribution to approximate the full conditional for latent variables. Our approximate inference and spatial prediction methods are fast and deterministic, using no sampling based strategies.
منابع مشابه
Bayesian Inference of Spatially Correlated Binary Data Using Skew-Normal Latent Variables with Application in Tooth Caries Analysis
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo ...
متن کاملBayesian inference for the multivariate skew-normal model: A population Monte Carlo approach
Frequentist and likelihood based methods of inference encounter several difficulties with the multivariate skew-normal model. In spite of the popularity of this class of densities, there are no broadly satisfactory solutions for estimation and testing problems. In this paper we propose a general population Monte Carlo algorithm which exploits the stochastic representation of the skew-normal ran...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2011